第五课时列方程解决简单的实际问题
教学内容:教材第8~11页,例7及相应的试一试,练一练,练习二第4~7题 教学目标:使学生掌握列方程解决简单的实际问题。
教学过程:
一、教学例7
1、出示教学挂图,指导学生仔细观察题目,明确题意。
2、题目中已知什么,要求什么?这些量之间有什么关系?板书:小军的成绩-小刚的成绩=0.06米
3、小军的成绩我们知道吗?不知道可以用什么来表示?
4、接下来,请你用列方程的方法来解决这道问题。(生独立解决,师巡视)指名上黑板。
5、集体核对,(指算式)这道算式表示什么意思?
6、计算完结果后,你是怎样检验的?
7、这道题目还可以怎样列式?(生小组内交流不同的算法,并说一说是根据什么数量关系计算的)
8、小结:刚才我们用列方程的方法来解决了问题,谁来说一说,用列方程解答时,我们是怎样列出方程的,解答过程中要注意些什么?
9、试一试
⑴、指名读题
⑵、题目的各个数量之间有什么关系?指名口答后生集体填写在书上。如有不同的可以书上补充。
⑶、请同学们用列方程的方法来解决这个问题。(生独立解决,师巡视) ⑷、集体核对。
10、练一练
⑴、引导学生明确条件和问题。
⑵、引导学生明确题目中已知量与未知量的相等关系,并将这个关系写在书上。 ⑶、根据数量关系列出方程并解答。(生独立解决,师巡视,帮忙有困难的学生) ⑷、集体核对。
二、巩固练习
1、练习二第4题
⑴、生独立读题,明确题意。
⑵、引导学生看图列出方程并解答。
⑶、集体核对。请你说一说你是怎样列出方程的。
⑷、做完后你是怎样检验的?
2、练习二第5题
⑴、指名读题,明确题意。
⑵、小组讨论每题的数量关系,全班交流。生独立解答 ⑶、集体核对
3、练习二第6题
⑴、生独立完成,师巡视
⑵、小组内核对,同时交流讨论数量关系。
⑶、全班交流。
三、课堂作业
练习二第7题
第二篇:六年级上数学教案第一章 位置
一、用数表示具体情境中的物理位置
1、我们把竖排叫做列,列一般从左往右数。横排叫做行,行一般从前往后数。这是一种规定或约定,因此这种确定列数和行数的方法是固定不可变的。
2、确定物体的位置,一般用两个数据描述,即第几列,第几行。用数对表示物体的位置时,先写列数,再写行数,把两个数写在括号内,用逗号分开。(列,行)。
例题1:聪聪坐在教室的第4列,第2行,用数对表示出来,明明坐在聪聪的正后方相邻的位置上,明明的位置用数对表示出来。
聪聪(4,2),明明(4,3)
二、方格纸上,用数对确定物体位置
1、在方格线上标注列数时,从左向右,从0开始:0,1,2,3,4??;标注行时,从前向后数,也是从0开始0,1,2,3,4??。方格纸的左下角的位置是0列0行,用数对表示该点位置是(0,0)。标注的列数和行数要和方格线对齐。
2、用数对可以表示平面图上物体的位置,看物体在哪一列,哪一行,根据列、行写出相应数对。
3、给出物体在平面上的数对,看数对的两个数表示哪一列,哪一行,行与列交叉处,就是物体的位置,这样就可以确定物体所在的位置。
4、两个数对的第一个数相同,它们所表示的物体位置在同一列上;两个数对的第二个数相同,它们所表示的物体位置在同一行上。
5、左右平移时,名个点位置变化的规律是列数变了列行数不变;上下平移时,各个点位置变化是行数变了而列数不变。
易错点:行列混淆或是巅倒。
三、习题
第二章 分数乘法
第一节 分数乘法
一、 分数乘整数
1、 分数乘整数的意义与整数乘法相同,都是求几个相同加数的和的简便算法。
2、 计算分数乘法时,用分数的分子和整数相乘的积做分子,分母不变。注意结果能约分的要约分,计算结果必须是最简分数。
3、 为了计算简便,可以先约分,再相乘。约分时特别注意不能让分数的分子和整数约分。
二、 分数乘分数
1、 分数乘分数的意义就是求一个数的几分之几是多少。
2、 计算分数乘分数时,用他子相乘的积作分子,分母相乘的积作分母。计算时,为了简便,可以先约分,再相乘(更多请搜索Www.),计算结果必须是最简分数。
注:
一个数(0除外)乘小于1的数,积小于这个数
一个数(0除外)乘大于1的数,积大于这个数
一个数(0除外)乘1,积等于这个数。
三、 分数的混合运算和简便计算
1、 分数混合运算的运算顺序与整数混合运算的运算顺序相同,都是先算乘除,后算加减,如有括号,先算括号里面的。
2、 整数乘法运算定律对于分数乘法同样适用,应用这些定律可以使一些运算变得简便。如几个分数连乘时,可以运用乘法的交换律和结合律进行简算。分数与分数的和与整数相乘时,若所乘整数是分数分母的倍数,可应用乘法的分配律进行简算。
分数乘法总结:先约分,再计算。分子相乘的积作分子,分母相乘的积作分母。(如果把整数看作分母是1的分数,则分数乘整数和分数乘分数的计算方法一样)。
易错点:其一:约分时,一定要注意,是将分母与分子约分。
其二:不要将分数乘法与分数加法相混淆。
第二节 解决问题(借助线段图)
一、求一个数的几分之几是多少
总结:1、求一个数的几分之几是多少的应用题用乘法计算。
2 在解题的过程中,关键是要弄清楚谁是单位“1”(即整体)。
3、单位“1”的量乘几分之几,就得到了比较量。
4、连续求一个数的几分之几是多少的分数乘法应用题,可以分解为两个一步计算的分数乘法应用题。
5、如果从一个量中取出一部分放入到另一个量中,两个量相等,那么原来两个量相差的数量是取出部分的2倍。
易错点:单位“1”的量。特别是连续求一个数的几分之几是多少的实际问题,解题关键是找准题中每一个分率所对应的单位“1”的量。
二、称复杂的求一个数的几分之几是多少的实际问题
1、已知一个部分量占总量的几分之几,求另一个部分量的解题方法。 方法一:单位“1”的量-单位“1”的量x ……此处隐藏7944个字……p>一、出示问题,选择策略
1、以图文结合的方式呈现例1,要求学生边读边看图。
2、引导交流:题中告诉了我们哪些条件?要求什么问题?大杯与小杯容量的关系还可以怎样表示?
3、提问:根据题目给出的条件,求每个小杯和每个大杯的容量,有什么困难?
如果720毫升果汁全部倒入小杯,而且知道正好倒了几个小杯,你会求出每个小杯的容量吗?
4、提出假设:如果把720毫升果汁全部倒入小杯,需要几个小杯呢?全部倒入大杯呢?
二、自主探索,运用策略
1、探索:如果把720毫升果汁全部倒入小杯,需要几个小杯?
结合例题中的示意图提问:
一个大杯可以替换成几个小杯?
(1) 把1个大杯替换成3个小杯的依据是什么?
(2) 由1个大杯可替换成3个小杯,你想到了什么?
(3) 小结:如果把720毫升果汁全部倒入小杯,需要(6+3)个小杯。
2、探索:如果把720毫升果汁全部倒入大杯需要几个大杯?
(1)提出问题后,要求让学生看图思考。
(2)交流中明确:将倒入6个小杯中的果汁倒入大杯中,根据“小杯的容量是大杯的1/3”,3个小杯的果汁正好可以倒满1个大杯,6个小杯的果汁正好可以倒满2个大杯。
(3)小结:如果把720毫升果汁全部倒入大杯,需要(1+2)个大杯。
3、列式解答:
引导:根据上面替换的结果,你能求出小杯和大杯的容量各是多少毫升?学生尝试列式解答,交流计算结果。
4、检验。
引导:求出的结果是否正确?我们可以怎样检验?交流中明确:要看结果是否符合题目中的两个已知条件。学生通过计算进行检验,并完成答句。
三、回顾与反思,提升策略
提问:在刚才解决问题的过程中,经过哪些步骤?你觉得哪些步骤是关键?你能说说解决这个问题的策略吗?
学生交流、汇报。
四、拓展应用,巩固策略。
1、指导完成“练一练”。
(1)出示问题,让学生逢主阅读,并要求尝试画出表示题意的草图。
(2)提问:这个问题与例1有什么相同的地方?有什么不同的地方?你打算用什么策略来解决这个问题?
(3)如果把2个大盒替换成小盒,这时一个就是几个小盒?你还想到些什么?
(4)要求学生根据上述讨论的结果,想办法解决这个问题目。
(5)让学生自主进行检验。
(6)反思小结:解决这个问题的关键是什么?
2、课堂作业:做练习十七第1题。
五、全课总结
通过这节课的学习,你有什么收获和感想?
教学后记:
第二课时用假设的策略解决问题
教学内容:教科书第91-92页。
教学目标:
1、使学生初步学会用“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、使学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学过程:
一、出示问题,讨论策略
1、出示例2,读题。
2、小组讨论:你准备怎样来解决这个问题?用什么策略?
3、你准备怎样假设呢?
二、自主探索,运用策略。
1、出示提问:
(1)如果这10只船都是大船,那么一共可以做多少人?
(2)50人与42人比较,多出了几人?为什么会多出8人呢?
(3)有一只小船被当成大船会多出几人?
(4)一共多出8人,说明有几只小船被当成大船?
2、列式计算:
3、你还可以怎样假设呢?你能根据以上的提问,用你的假设方法解决问题吗?(小组讨论)
4、小组汇报(一):
(1)如果这10只船都是小船,那么一共可以做多少人?
(2)30人与42人比较,少了几人?为什么会少12人呢?
(3)有一只大船被当成小船会少出几人?
(4)一共少12人,说明有几只大船被当成小船?
(5)列式计算。
5、小组汇报(二):假设大船与小船都是5只。
要求学生汇报后,全班共同填教科书191页表格,并解决问题。
三、巩固反思,提升策略。
练一练
1、学生先读题,独立完成并汇报。如果假都是兔,你能设计这样的四个问题吗?小组讨论完成,并汇报。
读题理解题意。提问:要算到怎样才能够解决问题?
2、学生独立完成,并汇报。
四、全课总结:
这节课我们学了什么本领?你有什么想法或还不懂的地方可以提出来?
教学后记:
第三课时解决问题的策略练习
教学内容:教科书第93页2-4题及“你知道吗?”
教学目标:
(1)使学生在解决实际问题的过程中进一步学会运用替换和假设的策略分析数量关系、确定解题思路,并有效地解决问题。
(2)使学生在对自己解决实际问题过程的不断反思中,感受替换和假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
(3)使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问的成功体验,提高学好数学的信心。
教学过程:
一、策略回忆
提问:前两节课,我们学习了什么内容?你在解决这些问题的时个有什么诀窍,或说关键是什么?可以讨论一下再回答。
二、巩固提升
练习十七第2题。
1、读题:
2、你准备用什么策略来解决这个问题?
3、准备怎样替换?关键是什么?
4、学生独立完成并检验。
练习十七第3题:
1、读题
2、你准备用什么策略来解决这个问题?
3、准备怎样假设?关键是什么?
4、学生独立完成并检验。
练习十七第4题:学生独立完成。完成后同桌说说解题的想法?鼓励学生用不同方法解答。
三、你知道吗?
一起读一读,你能理解题意吗?你会解答吗?
四、全课总结(略)
教学后记:
默认推荐其他精彩内容:六年级数学教案
六年级数学教案
六年级数学教案
小学六年级数学教案
六年级数学教案